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Abstract
A combinatorial formula of Rota and Stein is taken to perform Wick reordering
in quantum field theory. Wick’s theorem becomes a Hopf algebraic identity
called Cliffordization. The combinatorial method relying on Hopf algebras is
highly efficient in computations and yields closed algebraic expressions.
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1. Introduction

Quantum field theory needs, due to the quantization of fields, an operator ordering. Using,
for example, canonical quantization for bosonic fields b(�r, t) and fermionic fields ψ(�r, t) and
their canonical conjugates�b and�ψ one assumes the canonical (anti) commutation relations

[�b(�r,t), b(�r ′, t)]− = δ(�r − �r ′) {�ψ(�r,t), ψ(�r ′, t)}+ = δ(�r − �r ′). (1)

Hence one is forced to introduce ordered monomials into the variables to span the space of
the theory. Feynman introduced the time-ordering device in [20]. However, for practical
calculations one has to change the ordering to the so-called normal ordering [11, 39]. This
transition is seen in terms of Feynman diagrams as passing over to one-particle irreducible
graphs: see, for example, [23]. If this is compared with the transition in thermodynamics
formulated in the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy to Ursell
functions [32,37], one can see that the process of transforming a hierarchy from time- to normal-
ordered correlation functions removes the two-particle correlations in higher correlation
functions. The thermodynamic transition to Ursell functions removes any (n − 1)-point
correlation from n-point correlation functions. The well known τn and φn functions [28]
for time- and normal-ordered correlation functions are given as

τn(1, . . . , n) := Phys〈0|T (ψ(�r1, t1), . . . , ψ( �rn, tn))|0〉Phys

φn(1, . . . , n) := Phys〈0|N (ψ(�r1, t1), . . . , ψ( �rn, tn))|0〉Phys
(2)

where Phys〈0| · · · |0〉Phys is the expectation value w.r.t. the actual vacuum of the theory—not a
Fock vacuum in general, due to Haag’s theorem [22]—and T ,N are time- and normal-ordering
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operators. The contraction—sometimes called covariance—is denoted as C(ψI1 , ψI2), which
could in principle be any scalar-valued function but will be later on assigned as the propagator
F , see [14,15,18,21]. The hierarchy of τ and φ correlation functions is connected via Wick’s
theorem as

τ0 = 〈0|0〉 = 1

τ1(1) = φ1(1)

τ2(12) = 〈0|T (ψ1ψ2)|0〉 = 〈0|N (ψ1ψ2)|0〉 + C(ψ1ψ2) (3)

= φ2(12) + C(ψ1ψ2)

τ3(123) = φ3(123) + C(ψ1ψ2)τ1(3) + C(ψ2ψ3)τ1(1) + C(ψ3ψ1)τ1(2)
...

We have simplified our notation and dropped the subscript Phys from the vacuum. Furthermore,
we use integers as variables to denote the index sets of the field operators and correlation
functions, which may be algebraic or continuous. Now, irreducibility means that an τn function
cannot be written as a product of τn−r functions (r � 1): for example, τ4(1234) = τ2(12)τ2(34)
would be reducible.

If one is interested in composite particle calculations one has to remove lower-order
correlations from the desired correlation functions. This can be achieved in a non-perturbative
manner as shown in [35]. The Wick reordering theorem can be easily proved by Clifford
algebraic methods [12], unveiling its hidden geometric origin.

Remark. Caianiello [5] tried some time ago to connect time- and normal-ordered correlation
functions using Clifford algebras. Our approach is different, since we do not transform the
Grassmann wedge products into Clifford products as Caianiello did, but into another dotted
wedge product, see below. Since the Schwinger sources force the τn and φn functions to be
antisymmetric, this cannot be achieved using a Clifford basis without destroying the invariance
under basis transformations. Our approach is, however, sl(n) invariant. As long as normalized
states are considered (that is, quotients of expectation values) this approach is gl(n) invariant.

In this paper we show that the transition from time- to normal ordering is based on a
Hopf algebra structure of the Schwinger sources of quantum field theory. We introduce the
well known Shuffle–Hopf algebra [38] which might also be called Grassmann–Hopf algebra.
This viewpoint is of particular use in our case. Then we use a combinatorial formula of
Rota and Stein [34] to show that there are infinitely many Grassmann algebras which are not
isomorphic as Hopf algebras. It is shown that the Rota–Stein Cliffordization—employed in a
certain sense—is exactly a closed form of the Wick transformation. This should be compared
with the cumbersome recursive process usually performed in such reorderings [23]. The
computational benefits of the Hopf algebraic method compared with the usually employed and
non-perturbative method of Stumpf is discussed.

2. Non-perturbative normal ordering

2.1. Using generating functionals

Driven by needs of composite particle quantum field theory, Stumpf introduced the non-
perturbative normal ordering [35]. This method is based on generating functionals—avoiding
path integrals for certain reasons—to describe the Schwinger–Dyson hierachy of quantum field
theory. A closed formula is then given for the transition from time- to normal ordering and
vice versa. However, if actual computations have to be performed, a replacement mechanism
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is effectively used. We define the (fermionic) sources jK(�r, t) ∼= jI
∼= jn using abstract

indices or even integers to denote the set of relevant quantum numbers—the bosonic case can
be handled along the same lines [9,14,15,18]—and their duals ∂K(�r, t) ∼= ∂I ∼= ∂n which have
to fulfil

{∂I1 , ∂I2} := 0 {jI1 , jI2} := 0 {∂I1 , jI2} := δI1I2 . (4)

Furthermore, we define the functional Fock state for convenience as

∂I |0〉F = 0 ∀I. (5)

Then we are able to write down the generating functionals which code the hierarchy as

|T (j)〉 :=
∞∑
n=0

in

n!
τn(1, . . . , n)j1 . . . jn|0〉F (6)

or

|N (j)〉 :=
∞∑
n=0

in

n!
φn(1, . . . , n)j1 . . . jn|0〉F . (7)

The functional form of quantum field theory may be found in [35] where it is shown that this
formalism is able to replace usual methods: for example, the path integral approach.

Let now FK1K2(�r1, t1, �r2, t2) ∼= FI1I2 be the exact propagator of the theory. One can prove
the following theorem [12, 18, 35]:

|T (j)〉 = e− 1
2FI1I2 jI1 jI2 |N (j)〉 |N (j)〉 = e

1
2FI1I2 jI1 jI2 |T (j)〉. (8)

Expanding the series and comparing coefficients of the j sources one arrives at Wick’s theorem.
The factor 1

2 was introduced to meet the definitions of [35] and could be absorbed in F .

2.2. Using Clifford algebras

It was shown in a series of publications [14–16, 18] that quantum field theory can be
reformulated in terms of infinite-dimensional Clifford algebras of arbitrary bilinear form
(see [1, 6, 13, 17, 18, 29, 30]) now called quantum Clifford algebras [12]. Essentially, one
performs the following steps:

(i) Let V = 〈jI 〉 be the linear space spanned by the Schwinger sources jI .
(ii) Build the exterior algebra—symmetric algebra for bosons—over this space as the formal

polynomial ring in the anticommuting sources

{jI1 , jI2}+ = 0
∧
V = C ⊕ V ⊕ V ∧ V ⊕ · · ·

|T (j)〉 ∈
∧
V |N (j)〉 ∈

∧
V.

(9)

(iii) Define the space V ∗ of linear forms on V as the span of the dual bases ∂I , i.e. V ∗ = 〈∂I 〉
and build up the dual exterior algebra:

V ∗ = 〈∂I 〉 {∂I1 , ∂I2}+ = 0 {∂I1 , jI2}+ = δI1I2 . (10)

This space is defined to be reflexive since the same index set is used for j and ∂ bases.
We use also the notation ∂I = jI δ where we introduced the contraction. Indeed, this can
be written basis-free (for example, x δ = xI ∂I ) using summation convention for discrete
and continuous parts of the index set.
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(iv) Extend this setting to an action of
∧∗
V ∼= (

∧
V )∗ on

∧
V in the following

way [6, 12, 13, 18, 25, 29]:

(i) ∂I1(jI2) = δI1I2
(ii) ∂I (AB) = (∂IA)B + Â(∂IB)

(iii) A∗(B∗C) = (A∗B∗)C.
(11)

The notation is as follows: A,B,C ∈ ∧
V , i.e. A = AI1,...,InjI1 . . . jIn , A

∗, B∗ ∈ ∧
V ∗,

Â = (−1)rAI1,...,Ir jI1 . . . jIr and (note the reversion of indices here) A �→ A∗ =
AI1,...,In∂In . . . ∂I1 . This can be recast entirely—avoiding wedge and contraction—in
Clifford algebraic form by index doubling, see [12, 18].

(v) Define the field operators as Clifford algebra elements obtained by the Clifford map
according to Chevalley deformation:

ψK(�r, t) ≡ ψI := ∂I + BI1I2jI2∼= ∂K(�r, t) + BK1K2(�r1, t1, �r2, t2)jK2(�r2, t2) (12)

where summation and integration is once again implicit. This is a particular form of a
deformation quantization.

Define now explicitly the wedge product denoted by ∧ as the sign for the product of the
Schwinger sources. Furthermore, we use index-free notation to shorten the formulae. Let us
now define the ‘bi’-vector F := FI1I2jI1 ∧ jI2 . We introduce a second wedge product, the
dotted-wedge [26] denoted by ∧̇, defining on x, y ∈ V :

x ∧̇ y := x ∧ y + F
δ
(x ∧ y)

= x ∧ y + Fxy. (13)

Observe that x ∧̇ y = −y ∧̇ x and ∧̇ is indeed antisymmetric and a proper exterior product
which can be extended to the whole algebra

∧̇
V .

Let A∧(j, ∂) be a polynomial in j, ∂ by using the wedge product, i.e. A∧(j, ∂) =
A0 +AI1jI1 +AK1∂K1 +AI1,K1jI1 ∧∂K1 + · · ·+AI1...In,K1...KmjI1 ∧· · ·∧ jIn ∧∂K1 ∧· · ·∧∂Km + · · ·
and an analogous definition for A∧̇(j, ∂) where the dotted wedge is employed. In [12] the
following theorem was proved.

Let eF denote the exterior exponential of F ∈ ∧2
V and A∧ = A∧(j, ∂) an arbitrary

operator in End(
∧
V ). Then we have

eF ∧ A∧(j, ∂) ∧ e−F = A∧̇(j, ∂) = A∧(j, d) d := ∂ − Fj (14)

for operators and

eF |T (j)〉∧ = |N (j)〉∧̇ e−F |N (j)〉∧̇ = |T (j)〉∧ (15)

for functional states. The peculiar feature of this transition is that in a first step only the product
is transformed. Hence we have

|N (j)〉∧̇ =
∑ in

n!
τn(1, . . . , n)jI1∧̇ · · · ∧̇jIn |0〉F . (16)

The normal-ordered functional is thus written with the time-ordered correlation functions. The
usually obtained normal-ordered correlation functions appear only after we have rewritten the
normal-ordered functional in terms of the old wedge ∧. We arrive at

|N (j)〉∧ =
∑ in

n!
φn(1, . . . , n)jI1 ∧ · · · ∧ jIn |0〉F (17)

where the φn functions are connected to the τn functions via the Wick theorem w.r.t. the
contraction—or covariance—F . This transition is called Wick isomorphism φ and is a Z2-
graded algebra homomorphism [12].
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Symbolically we write this as

C�(V,Q) = φ ◦ C�(V,B) (18)

whereC�(V,Q) andC�(V,B) are Clifford algebras over the space V w.r.t. the quadratic form
Q or the—not necessary symmetric—bilinear form B, see [12,13,18]. In the present case, we
look at both ‘Clifford algebras’ as degenerated ones, i.e. as Grassmann algebras: that is, we
setQ ≡ 0 and let B = −BT be a totally antisymmetric form, which is also degenerated since
1/2(B + BT ) ≡ 0.

Example 1 (Schwinger–Dyson hierarchy for a free Hamiltonian). LetH be the functional
Hamiltonian of a free fermionic field. Such an H takes the form

H∧(j, ∂) := DI1I2jI1∂I2 (19)

whereDI1I2 is the kinetic operator (for example, a d‘Alembertian or Laplacian): see [15,18,36]
for a detailed model of spinor QED. The normal-ordered operator is obtained as

H ∧̇(j, ∂) = eF ∧H∧(j, ∂) ∧ e−F

= H∧(j, d)
= DI1I2jI1(∂I2 − FI2I3jI3)
= DI1I2jI1∂I2 −DI1I2FI2I3jI1jI3 (20)

and the generating functional of the Schwinger–Dyson hierarchy transforms as follows:

eF ∧H∧(j, ∂)|T (j)〉>∧ = eF ∧ E|T (j)〉∧
H ∧̇(j, ∂)|N (j)〉>∧̇ = E|N (j)〉∧̇
H∧(j, d)|N (j)〉>∧ = E|N (j)〉∧.

(21)

This example shows that finally the transition from time- to normal ordering is given by re-
expressing the dotted wedge ∧̇ in terms of the undotted wedge ∧ and vice versa. This can be
achieved by the above formal substitution in the operators (for example,H ∧̇(j, ∂) = H∧(j, d))
using (14) and expanding the dotted wedges in the generating functional, see [14,18]. However,
the deeper origin of the need for a normal ordering remains hidden. The root of such a reordering
will be found in the Hopf algebraic structure of the Grassmann algebra.

3. Grassmann–Hopf algebra

We have already introduced the Grassmann algebra above. To turn it into a Hopf algebra, we
have to add in a compatible way a co-algebra structure and an antipode. Let us denote the
unit map which injects the real or complex field into the algebra with η, η : k �→ ∧

V , while
∧ ≡ m∧, m∧ :

∧
V ⊗ ∧

V �→ ∧
V is the product map. Let us furthermore denote the linear

space underlying the Grassmann algebra as W : thus W = 〈∧V 〉. Then we can describe
the Grassmann algebra by the triple

∧
V = (W,m∧, η). The co-algebra structure is then

given by a diagonalization %—also called co-product—and a co-unit ε which arise naturally
from ‘dualizing’ the algebra structure in a functorial sense, see [27, 38]. The compatibility
of algebra and co-algebra structure requires the diagonalization and co-unit to be algebra
homomorphisms. That is we require that

ε(Id) = 1 ε(jI ) = 0 ε(A ∧ B) = ε(A) ∧ ε(B), (22)

while the co-product has to fulfil

%(Id) = Id ⊗ Id %(jI ) = jI ⊗ Id + Id ⊗ jI %(A ∧ B) = %(A) ∧%(B) (23)
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∆∆

mm

S Id SId

Figure 1. Tangle definition of the antipode axioms.

obeying an Z2-graded tensor product. We also introduce the Sweedler notation of co-products
as [38]

%(x) =
∑
x

x(1) ⊗ x(2) (24)

where we omit the subscript at the sum sign or even the sum sign itself, which is then implicit.
The above wedge product for tensors—(a⊗· · ·⊗ b)∧ (c⊗· · ·⊗ d)—needs for its evaluation
the graded switch τ∧ which is defined as (u ∈ ∧

r V , v ∈ ∧
s V )

τ∧ :
∧
r

V ⊗
∧
s

V �→
∧
s

V ⊗
∧
r

V

τ∧(u⊗ v) = (−1)rs(v ⊗ u)
(25)

extended by linearity to all elements of ⊗2W . Finally, we define the antipode S∧ ≡ S ∈
End(W)—i.e. the convolutive inverse of Id—as

S∧ :
∧
r

V �→
∧
r

V S∧(x) = (−1)rx (26)

also extended by linearity. Note that this is exactly the grade involution of the Grassmann
algebra. The sextuple

H∧ := (W,m∧, η,%, ε, S∧) (27)

is the Grassmann–Hopf algebra, which is in a certain sense unique (universality property),
see [38]. It can be checked that, with the above definitions, all axioms for a Hopf algebra are
met. In particular, the antipode axioms are fulfilled (see figure 1):

(i) ∧ ◦ (S ⊗ Id) ◦% = η ◦ ε
(ii) ∧ ◦ (Id ⊗ S) ◦% = η ◦ ε. (28)

Observe that in our case S2 = Id and the Grassmann–Hopf algebra is Z2-graded co-
commutative.

4. The Rota–Stein Cliffordization formula as Wick theorem

In [34] Rota and Stein introduced a deformed product on Hopf algebras. Adding the structure
of a Laplace pairing—for definitions see below—one can add to the universal structure
of a Grassmann–Hopf algebra a new product which relies on the Laplacian pairing. This
corresponds to an algebra deformation of the Grassmann algebra into a Clifford algebra. We
will, however, use this mechanism to connect Grassmann–Hopf algebras which are different,
i.e. non-isomorphic, as Z-graded (Hopf) algebras. This can be done using a Laplace pairing
w.r.t. an antisymmetric form, which will be afterwards defined to be the propagator of the
theory.
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V V

F

Figure 2. Tangle for the scalar-valued pairing.

����

∆ ∆

m

F

Figure 3. Tangle definition of the ‘Rota sausage’.

We define a Laplace pairing following [34]. While Rota and Stein have a general pairing
(·|·) : H∧ × H∧ �→ H∧, we restrict the target to k. Let (w|w′) be a bilinear mapping from
elementsw,w′ of the Grassmann–Hopf algebraH∧ into k which satisfies the Laplace identities

(i) (w ∧ w′|w′′) =
∑

±(w|w′′
(1)) ∧ (w|w′′

(2))

(ii) (w|w′ ∧ w′′) =
∑

±(w(1)|w′) ∧ (w(2)|w′′)
(iii) (w|w′)(1) ∧ ((w|w′)(2)|w′′) =

∑
±(w(1)|w′

(1)) ∧ ((w(2)|w′
(2))|w′′)

(iv) (w|(w′|w′′)(1)) ∧ (w′|w′′)(2) =
∑

±(w|(w′
(1)|w′′

(1))) ∧ (w′
(2)|w′′

(2)).

(29)

The signs ± have to be chosen due to the action of the graded switch to produce the correct
permutations. If the bilinear form is scalar-valued, i.e. in k as we assume, the wedge products
can be safely removed. Relations (i) and (ii) are the Hopf algebraic expression of the Laplace
expansion of determinants. Relations (iii) and (iv) state the compatibility of the bilinear form
and the co-product being an algebra homomorphism.

We use tangles [40] to make some of the relations more feasible. The tangle for the
scalar-valued pairing is illustrated in figure 2.

We are now ready to define with Rota and Stein the deformed product as

w∧̇w′ :=
∑

±w(1) ∧ (w(2)|w′
(1))F ∧ w′

(2) (30)

or in terms of tangles (see figure 3) as the so-called ‘Rota sausage’ [31]. Note that the deformed
product is given by a non-local graph. This process is called Cliffordization since it is usually
used to introduce a non-trivial symmetric bilinear form. The non-locality of the ‘sausage’
might have implications on Feynman diagrams built up from such products. Indeed, we found
in [19] that some singularities which arise due to reordering in vertices of nonlinear spinor
field models disappear due to this rearrangement. Hopf algebras have been recently used
successfully in perturbative renormalization theory [8, 24, 33].

Note the perplexing fact that this definition of the dotted wedge product is generic for
any element of the underlying space W = 〈∧V 〉 of Grassmann polynomials. This contrasts
strongly with the recursive definition of the dotted wedge product due to Chevalley deformation
of the Grassmann wedge product [6, 7]. There one has (x ∈ V )

γx :
∧
V �→

∧
V x �→ γx := x

F
+x∧ (31)
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which works only for x ∈ V and has to be extended by the rules given above for the Schwinger
sources (11). At this point we note that the grade involution appearing in (11)(ii) is exactly
the antipode S∧.

The only weak point in our definition is that we have not yet given a computational
definition of the pairing. The pairing can be axiomatized [10]. However, the most important
relations are the two Laplace expansions (29)(i) and (29)(ii) which allow us by applying the
co-product to decompose the pairing into pairings which contain only elements of the space
V . The Laplace pairing is a pairing which allows exactly such a decomposition.

However, we will give a second definition of the pairing, which is equivalent to the above
one, but might be more familiar to physicists. We want nevertheless to stress that the evaluation
of this expression is done by applying the Laplace expansion rules given above, despite the
fact that this time the Hopf algebraic nature of the expansion is disguised.

Let wr = x1 ∧ · · · ∧ xr and w′
s = y ′

s ∧ · · · ∧ y ′
1 with xi, yj ∈ V , define

(wr |w′
s)F :=

{
det(xi |y ′

j )F r = s
0 otherwise

(32)

and extend it by linearity to the whole space W . This can be rewritten using the projection
onto the scalar part 〈·〉∧0 : W �→ k and the contraction F w.r.t. F as

(w|w′) = 〈w
F
w′〉∧0

= ε(w
F
w′). (33)

Note that the projection onto the scalars 〈·〉∧0 is exactly the co-unit ε by definition.
The following example shows how this mechanism works. They have been produced for

higher dimensions using the computer algebra packages CLIFFORD for Maple, developed by
Rafał Abłamowicz [2, 3] and BIGEBRA [4]. However, the example given below can still be
done easily by hand.

Example 2 (Hopf algebraic Wick reordering). Let x, y ∈ V , let ◦ denote the concatenation
of operations and calculate the ‘sausage’ (i.e. formula (30)):

x∧̇y = ∧ ⊗ ∧ ◦ (Id ⊗ (·|·)⊗ Id) ◦ (%⊗%)(x ⊗ y)
= ∧ ⊗ ∧ ◦ (Id ⊗ (·|·)⊗ Id)(x ⊗ Id ⊗ y ⊗ Id

+x ⊗ Id ⊗ Id ⊗ y + Id ⊗ x ⊗ y ⊗ Id + Id ⊗ x ⊗ Id ⊗ y)
= ∧ ⊗ ∧ (0 + (Id|Id)F x ⊗ y + (x|y)F Id ⊗ Id + 0)

= x ∧ y + Fx,yId. (34)

Thus we obtain as the worked out Rota sausage the relation (13), of the dotted wedge, expressed
in undotted wedges. Let us compute a product of three dotted wedges (xi ∈ V ):

x1∧̇x2∧̇x3 = x1∧̇(F23Id + x2 ∧ x3)

= x1 ∧ x2 ∧ x3 + x1F23 + x2F31 + x3F12. (35)

It seems to be that we have to resolve the tangle recursively, but this is for demonstration only.
One can write a closed formula using nested Rota sausages to obtain the result directly. In fact,
we see clearly how the τn and φn correlation functions are interrelated due to this expansion.
As a last calculation, we find the dotted wedge product of two elements of x1 ∧x2, and x3 ∧x4,
both ∈ ∧2V :

(x1 ∧ x2)∧̇(x3 ∧ x4)

= (∧ ⊗ ∧) ◦ (Id ⊗ (·|·)⊗ Id) ◦ (%⊗%)((x1 ∧ x2)⊗ (x3 ∧ x4))
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= (∧ ⊗ ∧) ◦ (Id ⊗ (·|·)⊗ Id)((x1 ∧ x2)⊗ Id ⊗ (x3 ∧ x4)⊗ Id

+(x1 ∧ x2)⊗ Id ⊗ x3 ⊗ x4 − (x1 ∧ x2)⊗ Id ⊗ x4 ⊗ x3

+(x1 ∧ x2)⊗ Id ⊗ Id ⊗ (x3 ∧ x4) + x1 ⊗ x2 ⊗ (x3 ∧ x4)⊗ Id

+x1 ⊗ x2 ⊗ x3 ⊗ x4 − x1 ⊗ x2 ⊗ x4 ⊗ x3

+x1 ⊗ x2 ⊗ Id ⊗ (x3 ∧ x4)− x2 ⊗ x1 ⊗ (x3 ∧ x4)⊗ Id

−x2 ⊗ x1 ⊗ x3 ⊗ x4 + x2 ⊗ x1 ⊗ x4 ⊗ x3

−x2 ⊗ x1 ⊗ Id ⊗ (x3 ∧ x4) + Id ⊗ (x1 ∧ x2)⊗ (x3 ∧ x4)⊗ Id

+Id ⊗ (x1 ∧ x2)⊗ x3 ⊗ x4 − Id ⊗ (x1 ∧ x2)⊗ x4 ⊗ x3

+Id ⊗ (x1 ∧ x2)⊗ Id ⊗ (x3 ∧ x4))

= (Id|Id)F x1 ∧ x2 ∧ x3 ∧ x4 + (x2|x3)F x1 ∧ x2 − (x2|x4)F x1 ∧ x3

−(x1|x3)F x2 ∧ x4 + (x1|x4)F x2 ∧ x3(x1 ∧ x2|x3 ∧ x4)F Id. (36)

It is obvious that one can define an inverse mapping in the same fashion as long as the
pairing is non-degenerate. This allows one to expand the undotted wedges into the dotted
ones using the Rota–Stein Cliffordization w.r.t. the bilinear form −F . This is equivalent to
the expansion of the normal-ordered φn correlation functions in terms of the time-ordered τn
correlation functions.

Remark. In spite of the fact that the Grassmann algebras w.r.t. the two wedges (dotted and
undotted) are isomorphic as Z-graded Grassmann algebras—forgetting about the co-algebra
structure—this is not the case for the Hopf algebras H∧ and H∧̇. This can be seen easily by
examining the co-unit and co-product. Evaluating the co-unit ε∧ on a dotted and undotted
wedge (for example, from equation (13)) (x, y ∈ V ):

ε∧(Id) = 1 = ε∧̇(Id) ε∧(x) = 0 = ε∧̇(x)
ε∧(x ∧ y) = 0 ε∧(x∧̇y) = ε∧(x ∧ y + Fx,yId) = Fx,y �= 0.

(37)

Obviously, we find that ε∧ is not the co-unit ofH∧̇ and that we are forced to introduce a new co-
unit ε∧̇ there. An analogous situation is found for the co-products, which are also not identical.
We conclude that the Wick isomorphism is an algebra but not a co-algebra isomorphism, since
it is not even a co-algebra homomorphism. This opens the interesting possibility of having
a family of co-units and co-products for a—up to isomorphy—given Grassmann algebra to
make it into a Grassmann–Hopf algebra. In [16] we showed how such a process can be used
to introduce different vacua and even condensation phenomena. We know from our present
paper that the term ‘vacuum’ is connected with the co-unit of a Hopf algebra. In fact, the
co-unit is a sort of expectation value of the algebra elements which constitute the operators.
The Hopf algebraic non-isomorphic Z gradings are responsible for this feature.

We conjecture, furthermore, that this process is involved in the recent development of
Connes and Kreimer [8, 24, 33] of a theory on perturbative renomalization of quantum field
theory, where the antipode generates all the counter-terms in the forest theorems. However,
their theory uses the Z2 grading only and is thus not sensitive to the finer Z grading used in
our paper.

5. Conclusion

We have shown that the process of Wick reordering is governed by the Grassmann–Hopf algebra
structure uniquely assigned to Schwinger sources and a definite wedge product. Introducing
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a dotted wedge product, using Rota–Stein Cliffordization w.r.t. an antisymmetric bilinear
form F and the therefrom induced pairing, we found a closed formula for reordering time-
into normal-ordered and normal- into time-ordered n-point correlation functions. The Hopf
algebraic nature of this process was exhibited and its importance in quantum field theory was
demonstrated. It was also demonstrated that the Z grading of a Grassmann–Hopf algebra is
not preserved under such a transition. This was connected to different vacua underlying the
particular theory. The Stumpf approach to non-perturbative normal ordering was given and
compared to the Hopf algebraic method.
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